OnlineWoerterBuecher.de
Internes

Lexikon


combinator


A function with no free variables. A term is either a constant, a variable or of the form A B denoting the application of term A (a function of one argument) to term B. Juxtaposition associates to the left in the absence of parentheses. All combinators can be defined from two basic combinators - S and K. These two and a third, I, are defined thus: S f g x = f x (g x) K x y = x I x = x = S K K x There is a simple translation between combinatory logic and lambda-calculus. The size of equivalent expressions in the two languages are of the same order. Other combinators were added by David Turner in 1979 when he used combinators to implement SASL: B f g x = f (g x) C f g x = f x g S' c f g x = c (f x) (g x) B* c f g x = c (f (g x)) C' c f g x = c (f x) g See fixed point combinator, curried function, supercombinators. (2002-11-03)

In addition suitable contents:
[ 2 ] [ = ] [ ad ] [ ag ] [ al ] [ am ] [ an ] [ app ] [ application ] [ ar ] [ arc ] [ arg ] [ argument ] [ AS ] [ as ] [ ASL ] [ at ] [ av ] [ B ] [ b ] [ ba ] [ bd ] [ be ] [ bi ] [ bs ] [ by ] [ C ] [ ca ] [ cat ] [ ch ] [ ci ] [ co ] [ com ] [ combinatory logic ] [ con ] [ cons ] [ cu ] [ curried function ] [ D ] [ David Turner ] [ dd ] [ de ] [ du ] [ ed ] [ ee ] [ er ] [ es ] [ et ] [ expression ] [ fi ] [ file ] [ fix ] [ fixed point ] [ fixed point combinator ] [ fo ] [ for ] [ fr ] [ free ] [ free variable ] [ function ] [ ge ] [ gi ] [ gu ] [ h ] [ hr ] [ hu ] [ id ] [ ie ] [ il ] [ in ] [ int ] [ io ] [ ir ] [ is ] [ it ] [ J ] [ K ] [ la ] [ lambda-calculus ] [ language ] [ lc ] [ Lex ] [ li ] [ lu ] [ mo ] [ mod ] [ module ] [ mp ] [ na ] [ nc ] [ ne ] [ ng ] [ no ] [ ns ] [ O ] [ om ] [ pa ] [ parent ] [ parentheses ] [ pe ] [ ph ] [ pl ] [ point ] [ pr ] [ query ] [ rc ] [ re ] [ ro ] [ S ] [ SA ] [ sa ] [ sam ] [ SAS ] [ SASL ] [ se ] [ si ] [ sit ] [ SL ] [ sl ] [ so ] [ st ] [ su ] [ T ] [ ] [ tap ] [ th ] [ theory ] [ to ] [ tr ] [ tw ] [ ua ] [ um ] [ up ] [ us ] [ va ] [ var ] [ variable ] [ vi ]






Go Back ]

Free On-line Dictionary of Computing

Copyright © by OnlineWoerterBuecher.de - (6923 Reads)

All logos and trademarks in this site are property of their respective owner.

Page Generation in 0.2009 Seconds, with 17 Database-Queries
Zurück zur Startseite