OnlineWoerterBuecher.de
Internes

Lexikon


full laziness


A transformation, described by Wadsworth in 1971, which ensures that subexpressions in a function body which do not depend on the function' s arguments are only evaluated once. E.g. each time the function f x = x + sqrt 4 is applied, (sqrt 4) will be evaluated. Since (sqrt 4) does not depend on x, we could transform this to: f x = x + sqrt4 sqrt4 = sqrt 4 We have replaced the dynamically created (sqrt 4) with a single shared constant which, in a graph reduction system, will be evaluated the first time it is needed and then updated with its value. See also fully lazy lambda lifting, let floating. (1994-11-09)

In addition suitable contents:
[ = ] [ ad ] [ al ] [ am ] [ an ] [ app ] [ ar ] [ arc ] [ arg ] [ argument ] [ at ] [ av ] [ az ] [ b ] [ bd ] [ be ] [ bo ] [ by ] [ ca ] [ ch ] [ co ] [ con ] [ cons ] [ cr ] [ date ] [ de ] [ do ] [ du ] [ E ] [ ed ] [ edu ] [ ee ] [ er ] [ es ] [ et ] [ expression ] [ fi ] [ file ] [ fo ] [ for ] [ fully lazy lambda lifting ] [ function ] [ functional ] [ functional program ] [ functional programming ] [ gl ] [ gr ] [ graph ] [ graph reduction ] [ gu ] [ h ] [ hat ] [ hr ] [ id ] [ ie ] [ il ] [ in ] [ inc ] [ io ] [ ir ] [ is ] [ it ] [ la ] [ lambda lifting ] [ ld ] [ let floating ] [ Lex ] [ li ] [ ls ] [ lu ] [ ly ] [ ma ] [ mm ] [ mo ] [ mod ] [ module ] [ na ] [ nc ] [ ne ] [ ng ] [ nl ] [ no ] [ ns ] [ pe ] [ ph ] [ pl ] [ pr ] [ program ] [ programming ] [ query ] [ rc ] [ re ] [ reduction ] [ ro ] [ S ] [ sc ] [ se ] [ sh ] [ shar ] [ si ] [ so ] [ st ] [ su ] [ sy ] [ system ] [ th ] [ to ] [ tr ] [ transformation ] [ ua ] [ um ] [ up ] [ va ] [ value ] [ ve ]






Go Back ]

Free On-line Dictionary of Computing

Copyright © by OnlineWoerterBuecher.de - (5435 Reads)

All logos and trademarks in this site are property of their respective owner.

Page Generation in 0.181 Seconds, with 17 Database-Queries
Zurück zur Startseite