Zermelo Fränkel set theory
A set theory with the axioms of {Zermelo set theory} (Extensionality, Union, Pair-set, Foundation, Restriction, Infinity, Power-set) plus the Replacement {axiom schema}: If F(x,y) is a formula such that for any x, there is a unique y making F true, and X is a set, then F x : x in X is a set. In other words, if you do something to each element of a set, the result is a set. An important but controversial axiom which is NOT part of ZF theory is the Axiom of Choice. (1995-04-10) In addition suitable contents: [ = ] [ ai ] [ al ] [ am ] [ an ] [ ar ] [ arc ] [ at ] [ axiom ] [ Axiom of Choice ] [ b ] [ C ] [ Ch ] [ ch ] [ co ] [ con ] [ do ] [ du ] [ E ] [ element ] [ er ] [ es ] [ et ] [ fi ] [ file ] [ fo ] [ for ] [ formula ] [ h ] [ hat ] [ hing ] [ hr ] [ id ] [ il ] [ import ] [ in ] [ io ] [ iq ] [ ir ] [ is ] [ it ] [ ki ] [ la ] [ Lex ] [ li ] [ lt ] [ lu ] [ ma ] [ mo ] [ mod ] [ module ] [ mp ] [ mu ] [ N ] [ na ] [ nf ] [ ng ] [ ni ] [ NOT ] [ ns ] [ O ] [ om ] [ OT ] [ pa ] [ ph ] [ pl ] [ plus ] [ port ] [ query ] [ rc ] [ re ] [ ro ] [ ru ] [ sc ] [ se ] [ set ] [ set theory ] [ si ] [ so ] [ st ] [ strict ] [ su ] [ T ] [ th ] [ theory ] [ to ] [ tr ] [ us ] [ ve ] [ word ] [ X ] [ Z ] [ Zermelo set theory ]
[ Go Back ]
Free On-line Dictionary of Computing Copyright © by OnlineWoerterBuecher.de - (3809 Reads) |