OnlineWoerterBuecher.de
Internes

Lexikon


Zermelo set theory


A set theory with the following set of axioms: Extensionality: two sets are equal if and only if they have the same elements. Union: If U is a set, so is the union of all its elements. Pair-set: If a and b are sets, so is a, b. Foundation: Every set contains a set disjoint from itself. Comprehension (or Restriction): If P is a formula with one free variable and X a set then x: x is in X and P. is a set. Infinity: There exists an infinite set. Power-set: If X is a set, so is its power set. Zermelo set theory avoids Russell' s paradox by excluding sets of elements with arbitrary properties - the Comprehension axiom only allows a property to be used to select elements of an existing set. Zermelo Fränkel set theory adds the Replacement axiom. [Other axioms?] (1995-03-30)

In addition suitable contents:
[ = ] [ ad ] [ ai ] [ al ] [ am ] [ an ] [ ar ] [ arc ] [ at ] [ av ] [ axiom ] [ b ] [ be ] [ bi ] [ bit ] [ by ] [ C ] [ ch ] [ cl ] [ co ] [ con ] [ dd ] [ ding ] [ do ] [ du ] [ E ] [ ec ] [ ed ] [ ee ] [ eh ] [ element ] [ er ] [ es ] [ et ] [ excl ] [ fi ] [ file ] [ finite ] [ fo ] [ for ] [ formula ] [ fr ] [ free ] [ free variable ] [ h ] [ hr ] [ id ] [ ie ] [ il ] [ in ] [ infinite ] [ infinite set ] [ int ] [ io ] [ ir ] [ is ] [ it ] [ jo ] [ join ] [ ke ] [ la ] [ Lex ] [ li ] [ lu ] [ ly ] [ ma ] [ mo ] [ mod ] [ module ] [ mp ] [ ms ] [ mu ] [ na ] [ ne ] [ nf ] [ ng ] [ ni ] [ nl ] [ ns ] [ O ] [ om ] [ op ] [ pa ] [ paradox ] [ pe ] [ ph ] [ pl ] [ pr ] [ query ] [ rc ] [ re ] [ ro ] [ Russell ] [ sa ] [ sam ] [ se ] [ set ] [ set theory ] [ si ] [ sj ] [ so ] [ st ] [ strict ] [ T ] [ th ] [ theory ] [ to ] [ tr ] [ tw ] [ ua ] [ union ] [ us ] [ va ] [ var ] [ variable ] [ ve ] [ win ] [ ws ] [ X ] [ Z ] [ Zermelo Fränkel set theory ]






Go Back ]

Free On-line Dictionary of Computing

Copyright © by OnlineWoerterBuecher.de - (6029 Reads)

All logos and trademarks in this site are property of their respective owner.

Page Generation in 0.198 Seconds, with 17 Database-Queries
Zurück zur Startseite