OnlineWoerterBuecher.de
Internes

Lexikon


bounded


In domain theory, a subset S of a cpo X is bounded if there exists x in X such that for all s in S, s <= x. In other words, there is some element above all of S. If every bounded subset of X has a least upper bound then X is boundedly complete. ("<=" is written in LaTeX as subseteq). (1995-02-03)

In addition suitable contents:
[ 2 ] [ = ] [ ai ] [ al ] [ am ] [ ar ] [ arc ] [ as ] [ at ] [ b ] [ bo ] [ bs ] [ ch ] [ co ] [ com ] [ complete ] [ cpo ] [ de ] [ do ] [ domain ] [ domain theory ] [ du ] [ ed ] [ element ] [ er ] [ et ] [ fi ] [ file ] [ fo ] [ for ] [ h ] [ hat ] [ hr ] [ id ] [ il ] [ in ] [ is ] [ it ] [ LaTeX ] [ least upper bound ] [ Lex ] [ ly ] [ ma ] [ mo ] [ mod ] [ module ] [ mp ] [ na ] [ om ] [ pe ] [ ph ] [ pl ] [ query ] [ rc ] [ re ] [ S ] [ se ] [ set ] [ so ] [ st ] [ su ] [ subseteq ] [ T ] [ th ] [ theory ] [ tt ] [ up ] [ upper bound ] [ ve ] [ word ] [ X ]






Go Back ]

Free On-line Dictionary of Computing

Copyright © by OnlineWoerterBuecher.de - (3586 Reads)

All logos and trademarks in this site are property of their respective owner.

Page Generation in 0.0961 Seconds, with 17 Database-Queries
Zurück zur Startseite