partial ordering
 
 
   A  relation R is a partial ordering if it is a  pre-order (i.e. it is  reflexive (x R x) and  transitive (x R y R z => x R z)) and it is also  antisymmetric (x R y R x => x = y). The ordering is partial, rather than total, because there may exist elements x and y for which neither x R y nor y R x.  In  domain theory, if D is a set of values including the undefined value ( bottom) then we can define a partial ordering relation <= on D by  x <= y  if  x = bottom or x = y.  The constructed set D x D contains the very undefined element, (bottom, bottom) and the not so undefined elements, (x, bottom) and (bottom, x).  The partial ordering on D x D is then  (x1,y1) <= (x2,y2)  if  x1 <= x2 and y1 <= y2.  The partial ordering on D -> D is defined by  f <= g  if  f(x) <= g(x)  for all x in D.  (No f x is more defined than g x.)  A  lattice is a partial ordering where all finite subsets have a  least upper bound and a  greatest lower bound.  ("<=" is written in  LaTeX as  sqsubseteq).  (1995-02-03)  In addition suitable contents: [ 2 ] [ = ] [ ai ] [ al ] [ am ] [ an ] [ antisymmetric ] [ ar ] [ arc ] [ as ] [ at ] [ au ] [ av ] [ b ] [ be ] [ bo ] [ bot ] [ bottom ] [ bs ] [ by ] [ ca ] [ ch ] [ cl ] [ co ] [ con ] [ cons ] [ D ] [ de ] [ ding ] [ do ] [ domain ] [ domain theory ] [ du ] [ ec ] [ ed ] [ element ] [ er ] [ es ] [ et ] [ fi ] [ file ] [ finite ] [ fo ] [ for ] [ gr ] [ greatest lower bound ] [ h ] [ hr ] [ id ] [ il ] [ in ] [ inc ] [ io ] [ is ] [ it ] [ la ] [ LaTeX ] [ lattice ] [ least upper bound ] [ Lex ] [ ls ] [ lu ] [ ma ] [ metric ] [ mm ] [ mo ] [ mod ] [ module ] [ N ] [ na ] [ nc ] [ ne ] [ ng ] [ ni ] [ no ] [ ns ] [ om ] [ ordering ] [ pa ] [ pe ] [ ph ] [ pr ] [ pre-order ] [ query ] [ rc ] [ re ] [ reflexive ] [ relation ] [ ru ] [ se ] [ set ] [ si ] [ sit ] [ so ] [ sqsubseteq ] [ st ] [ struct ] [ su ] [ subseteq ] [ sy ] [ symmetric ] [ T ] [ test ] [ th ] [ theory ] [ to ] [ tr ] [ transitive ] [ tt ] [ up ] [ upper bound ] [ us ] [ va ] [ value ] [ ve ] [ X ]  
 
   
  [ Go Back ]
 Free On-line Dictionary of Computing Copyright © by OnlineWoerterBuecher.de - (5635 Reads)  |